Monotone Abstractions in Ontology-based Data Management

Gianluca Cima, Marco Console, Maurizio Lenzerini, Antonella Poggi

1 CNRS & University of Bordeaux
2 Sapienza University of Rome
gianluca.cima@u-bordeaux.fr, {console, lenzerini, poggi}@diag.uniroma1.it

Abstract

In Ontology-based Data Management (OBDM), an abstraction of a source query \(q \) is a query over the ontology capturing the semantics of \(q \) in terms of the concepts and the relations available in the ontology. Since a perfect characterisation of a source query may not exist, the notions of best sound and complete approximations of an abstraction have been introduced and studied in the typical OBDM context, i.e., in the case where the ontology is expressed in DL-Lite, and source queries are expressed as unions of conjunctive queries (UCQs). Interestingly, if we restrict our attention to abstractions expressed as UCQs, even best approximations of abstractions are not guaranteed to exist. Thus, a natural question to ask is whether such limitations affect even larger classes of queries. In this paper, we answer this fundamental question for an essential class of queries, namely the class of monotone queries. We define a monotone query language based on disjunctive Datalog enriched with an epistemic operator, and show that its expressive power suffices for expressing the best approximations of monotone abstractions of UCQs.

1 Introduction

In Ontology-based Data Management (OBDM) (Poggi et al. 2008), an ontology, i.e., a formal, logic-based representation of a domain of interest, is used to provide a high-level conceptual tool for accessing and managing the data sources of an information system. Suitable mappings declaratively specify the relationship between the data at the sources and the elements in the ontology, and this enables the user to carry out many relevant tasks on data through the lens of the ontology (Lenzerini 2018; De Giacomo et al. 2018).

In the last decade, there have been extensive investigations on the problem of answering queries expressed over the ontology by means of algorithms that, taking into account both the ontology and the mapping, produce suitable queries that extract the correct data from the sources. The problem is complicated by the need of reasoning about all components of the system, so as not to miss any answer logically implied by the axioms expressing both the ontology and the mapping (see the surveys in (Bienvenu 2016; Xiao et al. 2018; Ortiz 2018)).

Recent papers (Cima 2017; Lutz, Marti, and Sabellek 2018; Cima, Lenzerini, and Poggi 2019, 2020b; Cima et al. 2021) address a different issue in OBDM: starting from a query \(q_S \) expressed over the sources, the goal is to find a so-called abstraction of \(q_S \) (Cima 2020), i.e., an ontology-based characterization of \(q_S \) expressed in terms of the ontology elements, and whose answers coincide with the answer to the original query, modulo the ontology and the mapping. We encountered the need of abstraction during a joint project with a public statistical research institute. The institute’s departments must publish subsets of the data they gather in the form of semantically described linked open data. To compute the content of the datasets the departments execute suitable queries over the data sources mapped to a shared ontology. Notably, when the dataset is published, it must be documented through a SPARQL query expressed in terms of the ontology. This task is currently done manually. The notion of abstraction perfectly captures this scenario and provides the formal tool for automating the process: given the query over the sources computing the content of the dataset, the abstraction of such query with respect to the mapping and the ontology is exactly the SPARQL query to be associated to the open dataset. Besides the above use case, abstraction can be the appropriate tool in various scenarios. For additional insights we refer to the references mentioned above.

The first investigations on abstraction appear in (Cima 2017; Lutz, Marti, and Sabellek 2018). Both papers point out that the “perfect” abstraction of a union of conjunctive queries (UCQ) expressed over the data source not always exists, and present algorithms for computing such abstraction in the case where it both exists, and can be expressed as a UCQ over the ontology. In (Cima 2017; Cima, Lenzerini, and Poggi 2019) the notion of (sound and complete) approximations of the perfect abstraction is introduced, exactly to cope with situations in which perfectness cannot be achieved. Moreover, both papers make it clear that, for a given class of queries \(C \), one is probably interested in two specific forms of approximations, called \(C \)-minimally complete and \(C \)-maximally sound abstractions. Based on these notions, (Cima, Lenzerini, and Poggi 2019) presents a thorough analysis of the verification problem (check whether a given query is a complete or sound abstraction) and the computation problem of UCQ-minimally complete and UCQ-maximally sound abstractions of UCQ source queries in
OBDM systems based on DL-Lite. In (Cima, Lenzerini, and Poggi 2020b) the computation problem is studied in the context of a specific class of non-monotone queries for expressing abstractions, and it is shown that this class can provide abstractions that are better than the one in the UCQ class.

Thus, with the exception of (Cima, Lenzerini, and Poggi 2020b), all the results on abstractions have been obtained under the assumptions that abstractions are expressed as UCQs over the ontology, and many of them originate from the observations that best approximations in the UCQ class are not guaranteed to exist. Thus, a natural issue to investigate is whether such limitations affect even larger classes of queries for expressing abstractions. The main goal of this paper is to address the following question: do approximations of perfect abstraction that are best in a fundamental sense exist? Obviously, a related goal is to derive algorithms for computing approximations of abstractions that are best in the class of monotone queries, if they exist. Note that the class of monotone queries includes queries expressible in First-Order Logic and is therefore extremely important.

In this paper we answer positively to the above-mentioned fundamental question. More specifically, we provide the following contributions.

1. We present a general framework for abstraction in OBDM, based on the definition of queries as functions from the logical models of OBDM systems to sets of tuples. This is important for the goal of making our investigations and, in particular the notion of monotone queries, to be independent from any particular syntactic form. The usual concept of queries whose semantics is based on certain answers is a special case of our general notion.

2. The framework includes a new monotone query language, called DatalogK\textdagger, based on disjunctive Datalog enriched with inequalities and an epistemic operator.

3. We consider a scenario where the OBDM specification \(J \) is based on DL-Lite\textsubscript{RDFS} (i.e., the fragment of RDFS expressible in Description Logic), and present algorithms that, given a source query \(q_S \) expressed as UCQ, compute the best (sound or complete) approximations of the \(J \)-abstraction of \(q_S \) in the class of monotone queries, expressed in Datalog\textdagger. Such algorithms provide the proof that, in the considered scenario, for any UCQ \(q_S \), the best (sound or complete) approximations of the \(J \)-abstraction of \(q_S \) in the class of monotone queries always exists. As a consequence, if the perfect abstraction exists and is in the class of monotone queries, then it can be expressed in Datalog\textdagger.

4. The above algorithms provide the proof that, in the considered scenario, for any UCQ \(q_S \), the best (sound or complete) approximations of the \(J \)-abstraction of \(q_S \) in the class of monotone queries always exists. As a consequence, if the perfect abstraction exists and is in the class of monotone queries, then it can be expressed in Datalog\textdagger.

The paper is organized as follows. In Section 2 we recall some preliminary notions. In Section 3 we describe the formal framework for abstraction, including Datalog\textdagger. Starting from Section 4, we focus on the above-mentioned scenario, and present the algorithms for computing the best complete (Section 4) and the best sound (Section 5) abstractions of source UCQs. In Section 6 we discuss perfect monotone abstractions. Finally, Section 7 concludes the paper by mentioning future works in the context of abstraction.

2 Preliminaries

A relational schema \(R \) is a finite set of predicate symbols (each one with a fixed arity) and an \(R \)-database \(D \) is a finite set of facts using predicate symbols in \(R \) and constants from a countable infinite set \(\text{Const} \). A query \(q \) of arity \(n \) over a schema \(R \) is a function mapping each \(R \)-database to \(n \)-tuples of constants occurring in \(\text{Const} \). We denote by \(q^D \) the set of tuples obtained by applying \(q \) to the \(R \)-database \(D \). For two queries \(q_1 \) and \(q_2 \) over a schema \(\mathcal{S} \), we write \(q_1 \sqsubseteq_R q_2 \) if \(q_1^D \subseteq q_2^D \) for each \(R \)-database \(D \).

Let \(\text{Var} \) be a countable infinite set of symbols, called variables, disjoint from \(\text{Const} \). A relational atom over \(\text{Const} \) is an expression as \(\text{Const} \)-database to \(\text{Const} \)-database. For two \(\text{Const} \)-queries \(\psi \) and \(\psi' \), for each inequality \(x \neq y \) occurring in \(\text{Const} \).

A conjunctive query (CQ) \(q \) over a schema \(R \) is a query expressible as \(\{ x \mid \exists y. \phi(x, y) \} \), where \(x \) is a tuple of variables, called the distinguished variables of \(q \), \(\bar{y} \) is a tuple of variables, called the existential variables of \(q \), and \(\phi(x, \bar{y}) \) is the body of \(q \), i.e., a finite conjunction of relational atoms over \(R \) containing all the distinguished and existential variables of \(q \). The arity of \(q \) is the arity of \(\bar{x} \). A conjunction of conjunctive queries (UCQ) is a finite union of CQs with same arity, called its disjuncts. A (U)CQ with inequality ((U)CQ\textdagger) is simply a (U)CQ allowing inequality atoms in its body.

Let \(C_1 \) and \(C_2 \) be two sets of atoms. A homomorphism \(h \) from \(C_1 \) to \(C_2 \) (written \(h : C_1 \rightarrow C_2 \)) is a mapping from \(\text{Dom}(C_1) \) to \(\text{Dom}(C_2) \) such that: (i) \(h(\alpha) \in C_2 \), for each relational atom \(\alpha \in C_1 \); (ii) \(h(c) = c \), for each constant \(c \in \text{Const}(C_1) \); and (iii) \(h(x) \neq h(y) \), for each inequality variable \(x \neq y \) occurring in \(C_1 \).

Given a signature of unary and binary predicates, a Description Logic (DL) ontology is simply a TBox (set of axioms) expressed in a specific DL (Baader et al. 2003). In the technical sections, we are interested in ontologies expressed in DL-Lite\textsubscript{RDFS} (Cuenca Grau 2004; Rosati 2007; Cima, Lenzerini, and Poggi 2020). Such language corresponds to the fragment of RDFS\textdagger (Brickley and Guha 2014) expressible in DL-Lite. Specifically, a DL-Lite\textsubscript{RDFS} ontology is a finite set of assertions of the form \(B \sqsubseteq A \) or \(R_1 \sqsubseteq R_2 \), where \(B \) denotes a basic concept, i.e., an expression of the form \(A \sqsubseteq P \) or \(A \sqsubseteq P^- \), with \(A \) and \(P \) denoting an atomic concept and an atomic role, respectively, and \(R_1 \) and \(R_2 \) denote basic roles, i.e., expressions of the form \(P \) or \(P^- \).

An OBDM specification \(J \) is a triple \(\langle O, S, M \rangle \), where \(O \) is a DL ontology, \(S \) is a relational schema, called the source schema of \(J \), and \(M \) is a Global-and-Local-As-View (GLAV) mapping, i.e., a set of GLAV mapping assertions of the form:

\[
\forall \bar{x}, \forall \bar{y}, \phi(\bar{x}, \bar{y}) \rightarrow \exists \bar{z}. \psi(\bar{x}, \bar{z}),
\]

where \(\bar{x} \) are called the frontier variables of \(m \), \(\phi(\bar{x}, \bar{y}) \), called the body of \(m \), is a conjunction of relational atoms over \(S \), and \(\psi(\bar{x}, \bar{z}) \), called the head of \(m \), is a conjunction of atoms over \(O \).
An **OBDM system** is a pair $\Sigma = (J, D)$, where $J = \langle O, S, M \rangle$ is an OBDM specification, and D is an S-database. For a mapping M relating a source schema S to an ontology O and an S-database D, we denote by $M(D)$ the set of atoms over O obtained by chasing D with respect to M as described in (Fagin et al. 2005).

The semantics of an OBDM system is given in terms of interpretations for O following the so-called **standard names assumption** (Calvanese et al. 2007a). This means that the domain of every interpretation is $Const$, with every constant in the signature interpreted as itself. Note that this also implies the **unique name assumption**. We say that an interpretation I for O is a model of an OBDM system $\Sigma = \langle \langle O, S, M \rangle, D \rangle$ if (i) $I \models O$, and (ii) $(D, I) \models M$, where (D, I) is the interpretation obtained from I by adding the set of facts corresponding to D. We denote by $mod(J, D)$ the set of models of an OBDM system (J, D), and when $mod(J, D) \neq \emptyset$ we say that D is **consistent** with J. We next provide an example of OBDM specification.

Example 1. Let $J = \langle O, S, M \rangle$ be an OBDM specification such that $O = \emptyset$, $S = \{s_1/2, s_2/1, s_3/1\}$ and $M = \{m_1, m_2, m_3, m_4\}$, where:

- $m_1: \forall x_1, x_2, s_1(x_1, x_2) \rightarrow E(x_1, x_2)$
- $m_2: \forall x, s_1(x, x) \rightarrow SN(x)$
- $m_3: \forall x, s_2(x) \rightarrow \exists z E(x, z)$
- $m_4: \forall x, s_3(x) \rightarrow E(x, x)$

The mapping M of J establishes how predicates in the schema S relate to the ontology predicates E (which stands for edge) and SN (which stands for special node). △

A query q of arity n over the signature of an ontology O is a function whose domain is the power set of the set of all the interpretations for the ontology, and whose range is the power set of the set of all n-tuples of constants in $Const$. A query q over $J = \langle O, S, M \rangle$ is a query over the signature of the ontology O that, for every S-database D, associates to $mod(J, D)$ a set of tuples of constants. The answers to a query q with respect to the OBDM system (J, D), denoted as $q^{J, D}$, is obtained by applying the function q to the set of models $mod(J, D)$. Note that, although our framework is general enough to accept any kind of function as query, a very common method for defining $q^{J, D}$ when q is expressed as a $(U)Q$C is by sanctioning that the function q applied to $mod(J, D)$ returns the set of certain answers to the conjunctive query, where a certain answer is a tuple of constants in $Const$ that, once assigned to the distinguished variables of q, satisfies the body of q in every model in $mod(J, D)$.

For an OBDM specification $J = \langle O, S, M \rangle$, an S-database D, and a query q of arity n over J, with a slight abuse of notation, we denote by $Dom(J, D, q)$ the set of all constants occurring in J, D, and q. Moreover, given a set of constants $\Lambda \subseteq Const$, we denote by $q^{J, D}_\Lambda$ the answers to q w.r.t. (J, D) restricted to the constants of Λ, i.e., $q^{J, D}_\Lambda = q^{J, D} \cap \Lambda^n$.

The class of monotone queries is particularly important in this paper. In the context of an OBDM specification $J = \langle O, S, M \rangle$, a query q over J is monotone if, for every pairs of S-databases D, D', $mod(J, D) \subseteq mod(J, D')$ implies $q_{\Lambda(D, D')}^{J, D} \subseteq q_{\Lambda(D, D')}^{J, D'}$, where $\Lambda(D, D') = Dom(J, D, q) \cap Dom(J, D', q)$. This captures the usual intuition of monotonicity of queries in logic: when the knowledge possessed by the formal system increases (i.e., the set of models decreases), the answers to a query increase. Note that the restriction on the constants occurring in both the active domains of D and D' (other than in J and q) is imposed for ensuring that the property of monotonicity looks only for those constants occurring in both databases. We use \mathcal{M}^J to denote the class of all monotone queries in the context of J, and when J is understood, we simply use \mathcal{M}. Note that, for each OBDM specification J, \mathcal{M}^J includes the whole class of first-order queries evaluated under the certain answer semantics, that is arguably the most studied class in both the KR and the DB literature.

For two queries q_1 and q_2 over J, we write $q_1 \subseteq_J q_2$ if $q_1^{J, D} \subseteq q_2^{J, D}$ for each S-database D, and write $q_1 \sqsubseteq_J q_2$ if $q_1 \subseteq_J q_2$ and $q_1^{J, D} \subseteq q_2^{J, D}$ for at least one S-database D.

We say that q_1 and q_2 are J-equivalent if both $q_1 \subseteq_J q_2$ and $q_2 \subseteq_J q_1$ hold.

3 Framework

In what follows, we implicitly refer to an OBDM specification $J = \langle O, S, M \rangle$, and when we denote a query by q_O (resp., q_S) we mean that the query is for J (resp., a source query), i.e., is over the signature of the ontology O (resp., the schema S). We follow (Cima, Lenznerini, and Poggi 2019) for the basic definitions related to abstraction.

We say that q_O is a **perfect J-abstraction** of q_S if $q_O^{J, D} = q_S^{D}$, for each S-database D consistent with J.

As the condition for an ontology query to be a perfect abstraction of a source query is a strong one, it might be very well the case that a perfect abstraction of a source query does not exist. It is then reasonable to consider weaker notions, such as sound or complete approximations, of perfectness.

We say that q_O is a **complete (resp. sound)** J-abstraction of q_S if $q_S^D \subseteq q_O^{J, D}$ (resp. $q_O^{J, D} \subseteq q_S^D$), for each S-database D consistent with J.

Obviously, we might be interested in complete or sound abstractions that approximate q_S at best, at least in the context of a specific class of queries. If \mathcal{L}_O is a class of queries, we say that a query $q_O \in \mathcal{L}_O$ is an \mathcal{L}_O-minimally complete (resp., \mathcal{L}_O-maximally sound) J-abstraction of q_S if q_O is a complete (resp., sound) J-abstraction of q_S and there is no query $q'_O \in \mathcal{L}_O$ such that q'_O is a complete (resp., sound) J-abstraction of q_S and $q_O \sqsubseteq_J q'_O$.

We now introduce a new language, called **Datalog**$^\infty_K$, for expressing queries over OBDM specifications. The language is based on disjunctive Datalog, and is used in this paper for expressing abstractions. The basic component of a Datalog$^\infty_K$ query is a rule. Assume two disjoint and countably infinite sets of predicates \mathcal{E} and \mathcal{P}, called extensional and intensional, respectively. A Datalog$^\infty_K$ rule has one of the following forms:

- The typical form of disjunctive Datalog, i.e.,
 $$\gamma(x) \rightarrow \alpha_1(x_1) \lor \ldots \lor \alpha_n(x_n) \quad (1)$$
where $\gamma(\bar{x})$ is a conjunction of relational atoms on the predicates of P with \bar{x} as variables, and for $i = 1, \ldots, n$, $\alpha_i(\bar{x}_i)$ is a single relational atom whose predicate is in P such that $\bar{x}_i \subseteq \bar{x}$.

- A new format is specified as follows

$$K(\forall \bar{x}. \phi(\bar{x}, \bar{z}) \land \xi(\bar{x})) \rightarrow \psi_1(\bar{x}_1) \lor \ldots \lor \psi_n(\bar{x}_n) \tag{2}$$

where ϕ is a conjunction of relational atoms over \mathcal{E}, $\xi(\bar{x})$ is a conjunction of inequality atoms involving only variables from \bar{x} and for $j = 1, \ldots, n$, $\psi_j = \exists y_j. \gamma_j(\bar{x}_j, \bar{y}_j)$, where γ_j is a conjunction of atoms on P. When \bar{x}_j contains only variables \bar{x} occurring in $\phi(\bar{x}, \bar{z})$, for $j = 1, \ldots, n$, we say that the rule is safe.

An n-ary Datalog$^{\mathcal{K}}$ query $q_\mathcal{V}$ over an OBDM specification J is a finite set of Datalog$^{\mathcal{K}}$ rules whose extensional predicates coincide with the alphabet of \mathcal{O}, and whose intensional predicates include a special n-ary predicate Ans. We say that $q_\mathcal{V}$ is safe if all of its rules are safe. The semantics of $q_\mathcal{V}$ is provided relative to an OBDM system. Given an OBDM system (J, D), an interpretation for $q_\mathcal{V}$ is a pair $I = \langle \text{mod}((J, D)), f \rangle$, where f is a first-order interpretation (with domain Const) for the predicates in P. As usual, we may also see f as the set of facts $\{ p(\bar{e}) \mid \bar{e} \in p' \}$. We now define when I satisfies a Datalog$^{\mathcal{K}}$ rule.

- I satisfies a rule of the form (1) if the first-order formula $\forall \bar{x}. \gamma(\bar{x}) \rightarrow \alpha_1(\bar{x}_1) \lor \ldots \lor \alpha_n(\bar{x}_n)$ is true in f.

- I satisfies a rule of the form (2) if for all tuples \bar{c} of constants in Const, the fact that the first-order formula $\exists \bar{y}. \phi(\bar{c}, \bar{z}) \land \xi(\bar{c})$ is satisfied by every model in $\text{mod}((J, D))$ implies that f satisfies the first-order formula $\exists \bar{y}_j. \gamma_j(\bar{c}_j, \bar{y}_j)$, for some $j = 1, \ldots, n$. Observe that, if the rule is unsafe, \bar{c}_j may contain constants of Const that do not occur in \bar{c}.

An interpretation I for $q_\mathcal{V}$ is called a model of $q_\mathcal{V}$ if all the rules of $q_\mathcal{V}$ are satisfied by I. Finally, we define the notion of answers to an n-ary Datalog$^{\mathcal{K}}$ query $q_\mathcal{V}$ w.r.t. an OBDM system (J, D), denoted by $SaturateQ(J, D, q_\mathcal{V})$, as follows: $\{ \bar{c} \in \text{Dom}(J, D, q_\mathcal{V})^n \mid \bar{c} \in \text{Ans}^f \}$ for each model $(\text{mod}((J, D)), f)$ of $q_\mathcal{V}$.

**Example 2. Consider the OBDM specification J illustrated in Example 1. The following safe Datalog$^{\mathcal{K}}$ query $q_\mathcal{V}$ over J returns all the pairs (v_1, v_2) of special nodes that are known to be distinct and such that there is a path from v_1 to v_2 passing only for nodes known to be special:

$$K(E(v_1, v_2) \land SN(v_1) \land SN(v_2)) \rightarrow T_1(v_1, v_2)$$
$$K(SN(v_1) \land SN(v_2) \land v_1 \neq v_2) \rightarrow T_2(v_1, v_2)$$
$$T_1(v_1, v_2) \lor T_2(v_1, v_2) \rightarrow \text{Ans}(v_1, v_2)$$

The following proposition shows that Datalog$^{\mathcal{K}}$ is a monotone query language.

Proposition 1. Every Datalog$^{\mathcal{K}}$ query over J is in \mathfrak{M}^I, for every OBDM specification J.

The semantics should make it clear that K is the knowledge operator in the $S5$ epistemic logic: the formula KA should be read as “A is known (i.e., logically implied) by the system” (Levesque and Lakemeyer 2001). Therefore, when accessing the information modeled by (J, D), a Datalog$^{\mathcal{K}}$ query extracts what is known by the system, and this characteristic is crucial for not falling into undecidability resulting from using Datalog rules jointly with Description Logics (see (Levy and Rousset 1998; Calvanese and Rosati 2003)), as stated in the following proposition.

Proposition 2. Let Σ be an OBDM system. Answering safe Datalog$^{\mathcal{K}}$ queries w.r.t. Σ is decidable if and only if answering CQs w.r.t. Σ is decidable.\footnote{With answering we implicitly refer to the associated recognition problem, i.e., check whether a tuple is in the answer to a query.}

Although our framework is general enough to consider any DL for expressing ontologies and any query language for expressing source queries, in the rest of this paper we will carry out our investigation in the following setting: (i) ontologies are expressed in DL-Lite$_{RDFS}$, and (ii) source queries are expressed as UCQs.

At this point, one may wonder whether Datalog$^{\mathcal{V}}$ is the right language to express monotone abstractions in this setting. While a thorough analysis of the language is outside the scope of the present paper, the following proposition provides a positive answer to this question, at least from the computational point of view.

Proposition 3. In our setting, (i) answering safe Datalog$^{\mathcal{V}}$ queries is in coNP in data complexity, and (ii) there exists an OBDM specification J and a CQ $q_\mathcal{S}$ such that, given an \mathcal{S}-database D, answering the \mathfrak{M}-maximally sound J-abstraction of $q_\mathcal{S}$ is coNP-hard in data complexity.

To ease the presentation, from now on we assume that mappings and source queries do not mention constants. However, all our results can be straightforwardly adapted to the case where constants are allowed.

4 Minimally Complete Abstractions

We now prove that \mathfrak{M}-minimally complete J-abstractions of UCQs always exist and can be expressed in Datalog$^{\mathcal{K}}$. Actually, a fragment of Datalog$^{\mathcal{K}}$ suffices for this purpose, namely the one using only rules of form (2) without disjunction. We start with some useful subroutines.

Given a CQ $q_\mathcal{S} = \{ \bar{x} \mid \exists \bar{y}. \phi(\bar{x}, \bar{y}) \}$, the subroutine $\text{SaturateQ}(q_\mathcal{S})$ computes a UCQ$^\mathcal{K}$ in the following way: for each possible unifier μ on the variables in $\bar{x} \cup \bar{y}$ such that $\mu(\bar{x}) \subseteq \bar{x}$ for each $x \in \bar{x}$, $\text{SaturateQ}(q_\mathcal{S})$ contains a query obtained from $\mu(q_\mathcal{S})$ by adding the inequality atom $t_1 \neq t_2$ for each pair of distinct variables t_1, t_2 occurring in $\mu(q_\mathcal{S})$. For a UCQ $q_\mathcal{S}$, we denote by $\text{SaturateQ}(q_\mathcal{S})$ the UCQ$^\mathcal{K}$ obtained by applying $\text{SaturateQ}(q)$ to each disjunct q of $q_\mathcal{S}$. We write each UCQ$^\mathcal{K}$ q generated by $\text{SaturateQ}(q_\mathcal{S})$ as $q = \{ \bar{x} \mid \exists \bar{y}. \phi(\bar{x}, \bar{y}) \land \xi(\bar{x}, \bar{y}) \}$, where $\phi(\bar{x}, \bar{y})$ are the conjunctions of the relational atoms over \mathcal{S} and of the inequality atoms, respectively, occurring in the body of q.

Moreover, for an OBDM specification $J = \langle \mathcal{O}, \mathcal{S}, \mathcal{M} \rangle$ and a UCQ$^\mathcal{K}$ $q = \{ \bar{x} \mid \exists \bar{y}. \phi(\bar{x}, \bar{y}) \land \xi(\bar{x}, \bar{y}) \}$ over \mathcal{S}, we denote by r_q the following Datalog$^{\mathcal{K}}$ rule of form (2):

$$r_q = K(\exists \bar{z}. \mathcal{M}(q) \land \xi(\bar{x}, \bar{y})) \rightarrow \text{Ans}(\bar{x})$$
where (i) \(M(q) \) is computed by simply ignoring the inequality atoms and chasing the set of relational atoms occurring in the body of \(q \); (ii) \(\bar{y} \subset \bar{y} \) is the subset of the existential variables of \(q \) occurring in \(M(q) \); (iii) \(\bar{z} \) are the fresh variables introduced when computing \(M(q) \); and (iv) \(\xi(\bar{x}, \bar{y}) \) is the conjunction of the inequality atoms obtained from \(\xi(\bar{x}, \bar{y}) \) by removing all those atoms of the form \(y \neq t \) and \(t \neq y \) in which \(y \) is an existential variable occurring in \(\bar{y} \) but not in \(\bar{y} \) (i.e., not in \(M(q) \)) and \(t \) is any other possible variable. Observe that the epistemic operator is exploited to bind the existential variables coming from \(q \). This is achieved by pushing the subset \(\bar{y} \) of the existential variables \(y \) of \(q \) occurring in \(M(q) \) inside the \(K \) operator.

We are now ready to present the algorithm \(\mathfrak{M}-\text{MinComplete} \) for computing the \(\mathfrak{M} \)-minimally complete \(J \)-abstractions. Given an OBDM specification \(J = \langle O, S, M \rangle \) and a UCQ \(q_S \) over \(S \) such that Saturation\((q_S) = q_1 \cup \ldots \cup q_n \), \(\mathfrak{M}-\text{MinComplete}(J, q_S) \) outputs the Datalog\(\mathcal{K} \) query \(q_0 = \{ r_{q_1}, \ldots, r_{q_n} \} \) over \(J \).

Example 3. Consider the OBDM specification \(J \) illustrated in Example 1 and the CQ \(q_S = \{ \{ x \} \mid \exists y, s_1(x, y) \} \) over \(S \). One can verify that \(\mathfrak{M}-\text{MinComplete}(J, q_S) \) returns the following safe Datalog\(\mathcal{K} \) query \(q_0 \) over \(J \) asking for all those nodes \(v \) such that either \(v \) is connected to a node \(v' \) known to be different from \(v \) or \(v \) is a special node with a self-loop:

\[
\begin{align*}
K(E(x, y) \land x \neq y) & \rightarrow \text{Ans}(x) \\
K(E(x, x) \land 5N(x)) & \rightarrow \text{Ans}(x)
\end{align*}
\]

Note that \(q_0 \) is a better complete approximation than the query \(\{ \{ x \} \mid \exists y, E(x, y) \} \), which is the UCO-miminally complete \(J \)-abstraction of \(q_S \) (Cima, Lenzerini, and Poggi 2019).

Theorem 1. \(\mathfrak{M}-\text{MinComplete}(J, q_S) \) terminates and returns the unique (up to \(J \)-equivalence) \(\mathfrak{M} \)-minimally complete \(J \)-abstraction of \(q_S \).

Furthermore, we observe that the result of \(\mathfrak{M}-\text{MinComplete}(J, q_S) \) is independent from the assertions occurring in the ontology of the OBDM specification \(J \). Similar results can be obtained for OBDM specifications based on more expressive Horn DL ontologies.

Before concluding this section, we observe that \(\mathfrak{M}-\text{MinComplete}(J, q_S) \) may return unsafe Datalog\(\mathcal{K} \) queries. Nevertheless, these queries enjoy nice computational properties in our setting.

Proposition 4. Let \(q_0 \) be a Datalog\(\mathcal{K} \) query with only rules of the form \(K(\exists z, \phi(x, z) \land \xi(x)) \rightarrow \text{Ans}(x) \). In our setting, (i) answering \(q_0 \) is in \(\text{PTIME} \) in data complexity, and (ii) if \(q_0 \) is safe, then it is possible to compute a \(UCO\) \(q_r \) over \(S \) such that \(q_{CD}^r = q_{CD}^f \), for each \(S \)-database \(D \).

5 Maximally Sound Abstractions

We present the algorithm \(\mathfrak{M}-\text{MaxSound} \) for the computation of \(\mathfrak{M} \)-maximally sound \(J \)-abstractions of UCQs. The output of \(\mathfrak{M}-\text{MaxSound} \) is a safe Datalog\(\mathcal{K} \) query, thus proving that such abstractions always exist and can be expressed in Datalog\(\mathcal{K} \). To present our algorithm, we first need to introduce the notion of *inverse mappings*, which extends the one introduced in (Duschka and Genesereth 1998) for the problem of rewriting queries using *disjunctive views*.

To ease the presentation of our techniques, we now introduce a technical tool to encode a DL-Lite\(\mathcal{R} \) ontology into a set of GLAV mapping assertions. Given a conjunction of atoms \(\psi \) over a DL-Lite\(\mathcal{R} \) ontology \(O \), we denote by \(O(\psi) \) the conjunction of atoms over \(O \) obtained by chasing the atoms in \(\psi \) w.r.t. \(O \) as described in (Calvanese et al. 2007b). Note that, since \(O \) is a DL-Lite\(\mathcal{R} \) ontology, \(O(\psi) \) is always finite and do not introduce further existential variables. Starting from an OBDM specification \(J = \langle O, S, M \rangle \), we can generate an equivalent OBDM specification \(J' = \langle O, S, M' \rangle \) as follows. For each mapping assertion \(m \in M \) of the form \(\forall x, \exists y, \phi(x, y) \rightarrow \exists z, \psi(x, z) \), the mapping \(M' \) contains the mapping assertion \(\forall x, \exists y, \phi(x, y) \rightarrow \exists z, O(\psi(x, y)) \). From now on, without loss of generality, we assume OBDM specifications with an empty set of ontological assertions.

5.1 Inverse Mapping

Our algorithm for the computation of \(\mathfrak{M} \)-maximally sound abstractions is based on the notion of inverse mappings. Intuitively, given a GLAV mapping \(M \), the inverse of \(m \in M \) is a safe Datalog\(\mathcal{K} \) rule that characterizes those that may give rise to an homomorphic image of the head of \(m \) when chased with \(M \). To compute inverse mappings, we will define the algorithm InvMap. In order to define such algorithm, we need to introduce several additional notions.

Splitting. Given a set of relational atoms \(A \) and a set of variables \(U \) occurring in \(A \), we define the \(U \)-graph \(G_A^U \) of \(A \) as follows: (i) each atom \(x = y \) in \(A \) is a node of \(G_A^U \), and (ii) there is an edge between nodes \(\alpha_1, \alpha_2 \in A \) if and only if there exists a variable \(z \in U \) such that \(z \) occurs in both \(\alpha_1 \) and \(\alpha_2 \). The splitting of \(A \) around \(U \) (written Split\((A, U) \)) is the set of all those \(C \subset A \) such that the atoms in \(C \) form a connected component of \(G_A^U \), i.e., \(C \) is a maximal subset of \(A \) s.t. there exists a path from \(\alpha \) to \(\alpha' \) in \(G_A^U \), for each \(\alpha, \alpha' \in C \). Whenever necessary, we will assume that sets in Split\((A, U) \) are presented as a tuple.

Saturate. Given a GLAV mapping \(M \), the algorithm Saturate\(M(M) \) produces an equivalent set of rules with explicit inequalities on the frontier variables. Given a GLAV mapping assertion \(m = \forall x, \exists y, \phi(x, y) \rightarrow \exists z, \psi(x, z) \), the algorithm Saturate\(M(m) \) computes a set of rules in the following way: for each possible unifier \(\mu \) between the variables in \(\bar{x} \). Saturate\(M(m) \) contains a rule obtained from \(\mu(m) \) by adding the inequality atom \(x_1 \neq x_2 \) in the body of \(\mu(m) \), for each pair of distinct variables \(x_1, x_2 \in \mu(\bar{x}) \). For a GLAV mapping \(M \), we denote by Saturate\(M \) the set of rules obtained by applying Saturate\(M \) to each mapping assertion \(m \) of \(M \). It is easy to see that \((D, I) \models M \) if and only if \((D, I) \models \text{Saturate} M \). We call each assertion in Saturate\(M \) a saturated GLAV mapping assertion and Saturate\(M \) a saturated GLAV mapping. We write each

\[\text{\footnotesize\textcopyright 2021 American Institute of Informatics. Published by Elsevier, Inc.} \]
rule $m \in \text{Saturate}M(M)$ as $\phi(x, y) \land \xi(x) \rightarrow \exists z. \psi(x, z)$, where $\phi(x, y)$ and $\psi(x, z)$ are conjunctions of relational atoms over S and over O, respectively, whereas $\xi(x)$ is a conjunction of inequality atoms. We write $r\cdot\text{body}(m)$ for the set of relational atoms in $\phi(x, y)$, and, as in GLAV mappings, $\text{head}(m)$ for the set of relational atoms in $\psi(x, z)$.

Generators and Supports. Assume a saturated GLAV mapping M from a source schema S to an ontology O. Without loss of generality, we assume that mapping assertions in M use distinct variables. Given a set of atoms A over O, a generator of A w.r.t. M is a pair $g = (h, m)$, where h is a homomorphism from A to the head of m and $m \in M$. A generator g is V-distinguished, for some $V \subseteq \text{Var}(A)$, if $h(v)$ is a frontier variable of m, for each $v \in V$, and $h(u)$ is not a frontier variable of m, for each $u \notin V$. We write $\text{Gen} \otimes M(A, M, V)$ for the set of V-distinguished generators of A w.r.t. M. Intuitively, a generator $g = (h, m)$ of A w.r.t. M represents a possible way to obtain a homomorphic copy $B \subseteq \text{M}(D)$ of A by applying m to an S-database D. If such generator is V-distinguished, then the only constants occurring in B are images of the variables in V.

Example 4. Let $\mathcal{M} = \{m_A, m_B, m_C, m_D\}$, where:

- $m_A: s_1(x_1, z) \land x_1 \neq x_2 \rightarrow \exists z. f_1(x_1, Z) \land f_2(Z, x_2)$,
- $m_B: s_2(x_1, z) \land x_3 \neq x_4 \rightarrow \exists z. f_3(x_3, Z) \land f_4(Z, x_4)$,
- $m_C: s_3(x_1, y_1) \land s_4(y_1, y_2) \rightarrow f_1(x_1, z_1)$,
- $m_D: s_5(x_1, z_1) \land x_1 \neq x_2 \rightarrow f_3(x_1, z_1)$.

For the set of atoms $A_1 = \{f_1(x_1, Z), f_2(Z, x_2)\}$, we have that $\text{Gen}A_1, M, \{x_1, x_2\} = \{g_1, g_2\}$, where $g_1 = (h_1, m_A)$ and $g_2 = (h_2, m_B)$, where h_1 is the identity function, whereas $h_2(x_1) = x_3$, $h_2(x_2) = x_4$, and $h_2(Z) = Z'$. For the set of atoms $A_2 = \{f_1(x_1, Z)\}$, we have that $\text{Gen}A_2, M, \{x_1, Z\} = \{g_3, g_4\}$, where $g_3 = (h_3, m_C)$ and $g_4 = (h_4, m_D)$.

Example 5. Refer to Example 4. For $A = \{A_1, A_2, A_3\}$, we have $\text{Gen}A, M, \{x_1, x_2\} = \{G_1, G_2\}$ and $\text{Gen}A', M, \{x_1, x_2, Z\} = \{G_3, G_4\}$, resp., where $G_1 = (g_1), G_2 = (g_2), G_3 = (g_3, g_5)$, and $G_4 = (g_4, g_9)$.

We now characterize those databases D for which $M(D)$ contains an homomorphic copy of A generated using the mappings constituting some $G \in \text{Gen}A(M, M, V)$. To this end, we define a formula σ_G that we call the support of $G \in \text{Gen}A(M, M, V)$. Given $G = \{g_1, \ldots, g_n\}$ in $\text{Gen}A(M, M, V)$ with $g_i = (h_i, m_i)$ for each $i = 1, \ldots, n$, let $\langle p_1, \ldots, p_n \rangle$ be a tuple of renaming for the variables of M whose images are pairwise disjoint. For $i = 1, \ldots, n$, we define $\beta_i = \rho_i(r\cdot\text{body}(m_i))$ and $\sigma_G = \bigwedge \rho_i(r\cdot\text{body}(m_i))$. Intuitively, each β_i represents a set of relational source atoms that is needed to generate an homomorphic image of $h_i(A_i)$ using m_i.

Example 6. Refer to Example 5. We have $\sigma_{G_1} = s_1(x_1', y_2'), \sigma_{G_2} = s(x_3', x_4'), \sigma_{G_3} = s_3(x_5', y_3') \land s_4(y_1', y_2') \land s_5(x_6', x_7')$, and $\sigma_{G_4} = s_5(x_8', x_9') \land s_6(x_8', x_9')$. \(\triangle\)

In order to connect together the different $h_i(A_i)$ to form an image of A, we need to impose further restrictions on the variables of σ_G. These restrictions will take the form of equalities. Let η_G denote binary relation over $\text{Var}(A)$ defined as follows: for each $i, j = 1, \ldots, n$, and $v \in V$, $(\rho_i(h_i(v)), \rho_j(h_j(v))) \in \text{R}_{G}$. Moreover, given a set $\bar{x} \subseteq \bar{V}$, let $\eta[\bar{x}]$ denote the binary relation over $\text{Var}(A) \cup \bar{x}$ defined as follows: for each $i = 1, \ldots, n$, and $x \in \bar{x}$, $(x, \rho_i(h_i(x))) \in \eta[\bar{x}]$. We use $\eta[\bar{x}]$ to denote the reflexive and transitive closure of $\eta \cup \eta[\bar{x}]$.

Example 7. Refer to Example 6. We have that $\eta_{G_1}^{[\{x_1, x_2\}]}$, $\eta_{G_2}^{[\{x_1, x_2\}]}$, and $\eta_{G_4}^{\{x_1, x_2\}}$ are the reflexive and transitive closure of $\{\{x_1, x_1\}, \{x_2, x_2\}, \{x_3, x_3\}, \{x_4, x_4\}, \{x_5, x_5\}, \{x_6, x_6\}, \{x_7, x_7\}, \{x_8, x_8\}, \{x_9, x_9\}\}$.

As customary, for each equivalence class E of $\eta[\bar{x}]$, we select an element $s(E) \in E$ as representative; if E contains elements of \bar{x}, we require $s(E) \notin \bar{x}$. Moreover, given $v \in \text{Var}(A)$, we use $v_{\eta[\bar{x}, \bar{x}]}$ to denote the equivalence class of $\eta[\bar{x}]$ that contains v. Finally, we define the \bar{x}-support $\sigma[\bar{x}]_G$ of G as the formula $\exists \bar{x}. \eta_{\bar{x}}(\sigma[\bar{x}]_G)$, where $\eta_{\bar{x}}(\sigma[\bar{x}]_G)$ is obtained from $\sigma[\bar{x}]_G$ by replacing each variable $v \in \text{Var}(A)$ with $s(v_{\eta[\bar{x}, \bar{x}]} \cup \bar{x})$.

Example 8. Refer to the previous example. We have that $\sigma_{G_1}^{\{x_1, x_2\}} = s_1(x_1, x_2)$, $\sigma_{G_2}^{\{x_1, x_2\}} = s_3(x_3, x_4)$, $\sigma_{G_3}^{\{x_1, x_2\}} = \exists y_1 \cdot s_3(x_3, y_1) \land s_4(y_1, y_2) \land s_5(x_2, x_1)$, and $\sigma_{G_4}^{\{x_1, x_2\}} = \exists x_7 \cdot s_{x_7}(x_1, x_2) \land s_5(x_5, x_6)$. \(\triangle\)

The InvMap Algorithm. We are now ready to formally define the InvMap algorithm. In the algorithm, we use $\text{Partitions}(\bar{z})$, where \bar{z} is a set of variables, to denote the set of all 2-tuples of pairwise disjoint sets (U, V) such that $U \cup V = \bar{z}$. Intuitively, given an OBDM specification $J = (O, S, M, \text{InvMap}(J))$ returns a set of safe Datalog rules that represents a sound inverse of M w.r.t. O, i.e., a set of formulae that, given an S-database D, characterize those databases D' such that $\text{mod}(J, D) \supseteq \text{mod}(J, D')$. Equivalently, given an S-database D, InvMap(J) characterizes all those databases D' such that $M(D')$ is an homomorphic copy of $M(D)$.

In order to define a sound inverse of M w.r.t. O, InvMap(J) relies on the notions of supports and genera-
Algorithm 1: InvMap

Input: OBDM specification \((\emptyset, S, M)\)
Output: Set \(R\) of safe Datalog\(_K\) rules
1: \(M' = \text{SaturateM}(M)\)
2: \(R = \emptyset\)
3: for all \(m : \phi(x, y) \land \xi(x) \rightarrow \exists z. \psi(x, z, \bar{\xi}) \in M'\) do
4: \(\Gamma = \emptyset\)
5: for all \((U, V) \in \text{Partitions}(z)\) do
6: \(S_\emptyset = \text{Split}(\psi, U)\)
7: for all \(G \in \text{Gens}(S_\emptyset, M', V \cup x)\) do
8: if \((x, x') \notin n_i[G] \text{ for each } x, x' \in \bar{x} \text{ s.t. } x \neq x'\) then
9: \(\Gamma = \Gamma \cup \{\sigma_i^G\}\)
10: end if
11: end for
12: end for
13: end for
14: \(\text{inv}(m) = K(\exists z. \psi(x, z, \bar{\xi}) \land \xi(x)) \rightarrow \bigvee_{\gamma \in \Gamma} \gamma\)
15: \(R = R \cup \{\text{inv}(m)\}\)
16: end for
17: return \(R\)

Perfect Abstractions

It follows from Theorem 1 that either the perfect abstraction of a source UCQ can be expressed in Datalog\(_K\), or it cannot be expressed as a monotone query (if it exists at all). We now present an algorithm that, given an OBDM specification \(J\) and a source UCQ \(q_s\), returns the perfect \(J\)-abstraction of \(q_s\), if and only if it exists and is \(M\). To this aim, we make use of Proposition 4, and refer to the \(q_r\) defined in that proposition as the rewriting of \(q_s\) w.r.t. \(J\).

Our algorithm, which we call \(M\)-Perfect, goes as follows. Given an OBDM specification \(J = (O, S, M)\) and a UCQ \(q_s\) over \(S\) as input: if (i) \(q_0 = M\)-MinComplete(\(J, q_s\)) is safe and (ii) \(q_r \subseteq S\) then return \(q_0\); otherwise, report “no perfect \(J\)-abstraction of \(q_s\) is in \(M\).”

We conclude this section by establishing termination and correctness of the \(M\)-Perfect algorithm.

Theorem 3. \(M\)-Perfect(\(J, q_s\)) terminates and returns the unique (up to \(J\)-equivalence) \(M\)-maximally sound \(J\)-abstraction of \(q_s\).

Conclusion

We presented a thorough study of monotone abstractions of UCQs in OBDM systems. We proved that best approximations of such abstractions always exist and introduced a query language, Datalog\(_K\), that captures them. Directions for future work are many. In the context of monotone abstractions, we would like to investigate the case of more expressive ontology languages, e.g., DL-Lite\(_R\), as well as more expressive source query languages, e.g., unions of conjunctive queries with inequalities and disjunctive Datalog. Finally, the problem of checking whether given best approximations are expressible in simpler and more user friendly languages remains open.
Acknowledgements

This work has been partially supported by the ANR AI Chair INTENDED (ANR-19-CHIA-0014), by MIUR under the PRIN 2017 project “HOPE” (prot. 2017MMJJRE), and by the EU under the H2020-EU.2.1.1 project TAILOR, grant id. 952215.

References

