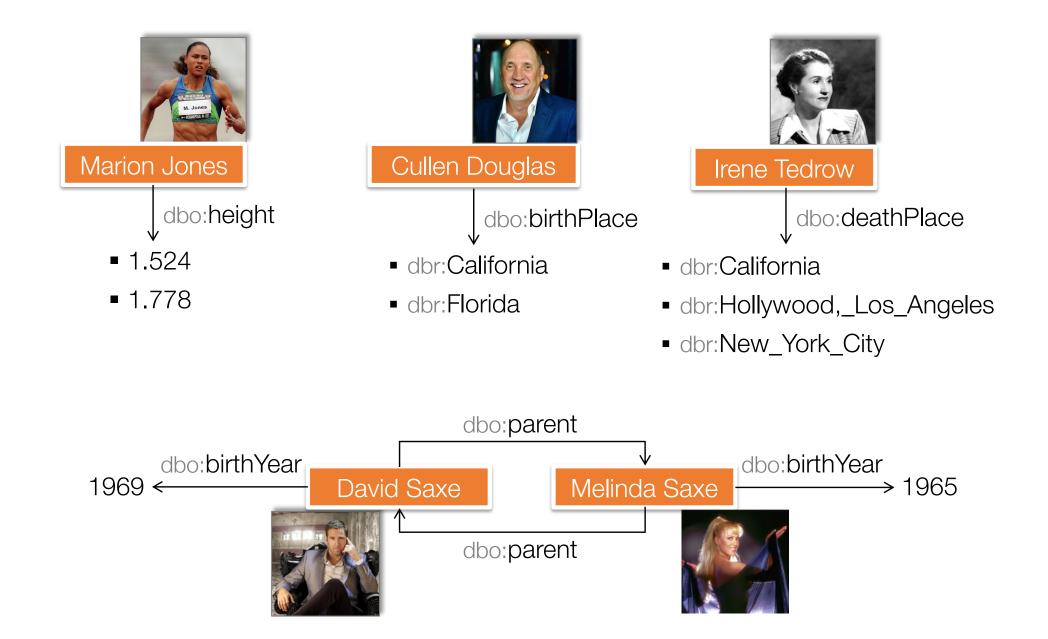


Quantitative Reasoning about Dependency Violation in Databases

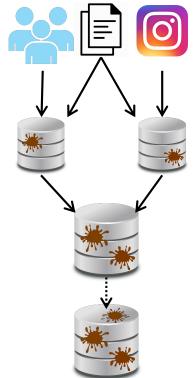
Benny Kimelfeld Joint work with **Ester Livshits**

Examples of Inconsistency (DBPedia)



Sources of Inconsistent Data

- Imprecise data sources
 - Crowd, Web pages, social encyclopedias, sensors, ...
- Imprecise data generation
 - ETL, natural-language processing, sensor/signal processing, image recognition, …
- Conflicts in data integration
 - Crowd + enterprise data + KB + Web + …
- Data staleness
 - Entities change address, status, ...
- And so on ...



Principled Declarative Approaches

- Several principled approaches proposed for reasoning about inconsistent data
- Concepts in declarative approaches
 - Integrity constraints (dependencies)
 - Or dependencies
 - Inconsistent database
 - Violates the constraints
 - Edit operations
 - Delete/insert tuple, update an attribute
 - Repairs
 - Consistent DB following a *legitimate* edit
 - Theoretical formulation [Arenas, Bertossi, Chomicki 99]

Examples of Integrity Constraints

- Key constraints
 - Person(<u>ssn</u>,name,birthCity,birthState)
- Functional Dependencies (FDs)
 - birthCity \rightarrow birthState
- Conditional FDs
 - − birthCity → birthState whenever country="USA"
- Denial constraints
 - not[Parent(x,y) & Parent(y,x)]
- Referential (foreign-key) constraints
 - $Parent(x,y) \rightarrow Person(x) \& Person(y)$

Examples of Repairs

$person \rightarrow birthCity$

$birthCity \rightarrow birthState$

person	birthCity	birthState
Douglas	LA	CA
Douglas	Miami	FL
Tedrow	LA	CA
Tedrow	LA	NYC
Jones	LA	CA

Cardinality (& subset) repair

Classic Repair Problems

- Repairing / Cleaning
 - Compute a (good/best) repair
 - [Bertossi+ 08] [Kolahi,Lakshmanan 09] [Livshits,K,Roy 18]
- Consistent Query Answering (CQA)
 - Which query answers are not affected by inconsistency?
 - Formally, find the tuples that belong to Q(J) for all repairs J
 - [Arenas+ 99] [Fuxman,Miller 05] [Koutris,Wijsen 17]
- Repair checking
 - Given I and J, is J a repair of I? ; typically a complexity tool
 - [Afrati, Kolaitis 09] [Chomicki, Marcinkowski 05]
- Repair counting (& enumeration)
 - Measure consistency of query answers [Maslowski,Wijsen 14]
 - Measure inconsistency of data [Livshits,K 17] [Livshits+ 21]; also, in the KR community [DeBona,Grant,Hunter,Konieczny 18]

Inconsistency Measure

- Idea: quantify the extent to which integrity constraints are violated
- Several reasons:
 - Given a new data source, how reliable is it?
 - Progress bar for data cleaning
 - [Livshits, Kochirgan, Tsur, Ilyas, K, Roy: Properties of Inconsistency Measures for Databases, SIGMOD 2021]
 - Which tuples are mostly responsible for inconsistency?
 - [Livshits, K: The Shapley Value of Inconsistency Measures for Functional Dependencies. ICDT 2021]
- Studied in KR community [Grant, Hunter, ...], recently in the DB community [Bertossi, ...]

Basic Inconsistency Measures

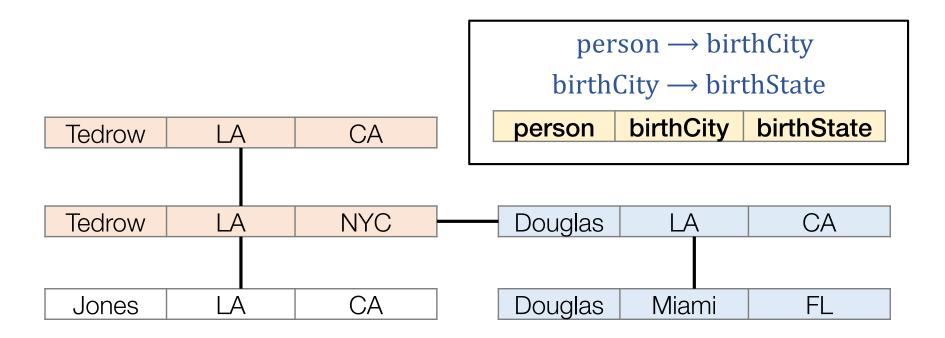
- Drastic: 1 or 0 (inconsistent or consistent)
 [Thimm 2017]
- #violations (i.e., minimal inconsistent subsets)
 [Hunter & Konieczny 2008]
- #problematic tuples (i.e., tuples in violations)
 [Grant & Hunter 2011]
- **#repairs**: number of maximal consistent subsets [Grant & Hunter 2011]
- Minimal #tuples to delete to attain consistency (cardinality repair)
 - [Grant and Hunter 2013], [Bertossi 2018]

Outline

- 1. Inconsistency Measures via Repairs
- 2. Repair Counting We are here
- 3. Repair Optimization
- 4. Responsibility to Inconsistency

Repair Counting as MIS Counting

- For FDs, a repair is a Maximal Independent Set (MIS) of the conflict graph of the database
 - Tuples \Rightarrow nodes, violations \Rightarrow edges
- Hence, repair counting amounts to MIS counting
 Over conflict graphs



Counting Set-Minimal Repairs

- MIS counting is **#P-complete** [Provan,Ball 83] and inapproximable [Roth 96]
- Special tractable cases, e.g., P₄-free graphs
 - P₄-free graph (a.k.a. cograph): no induced path of length 4
- What about the conflict graphs?

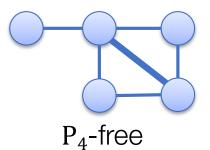
THEOREM [Livshits,K,Wijsen 2021 (JCSS)]

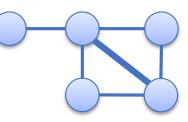
Equivalent for *every fixed set of FDs*:

- 1. Repairs can be counted in poly. time
- 2. Every conflict graph is P_4 -free

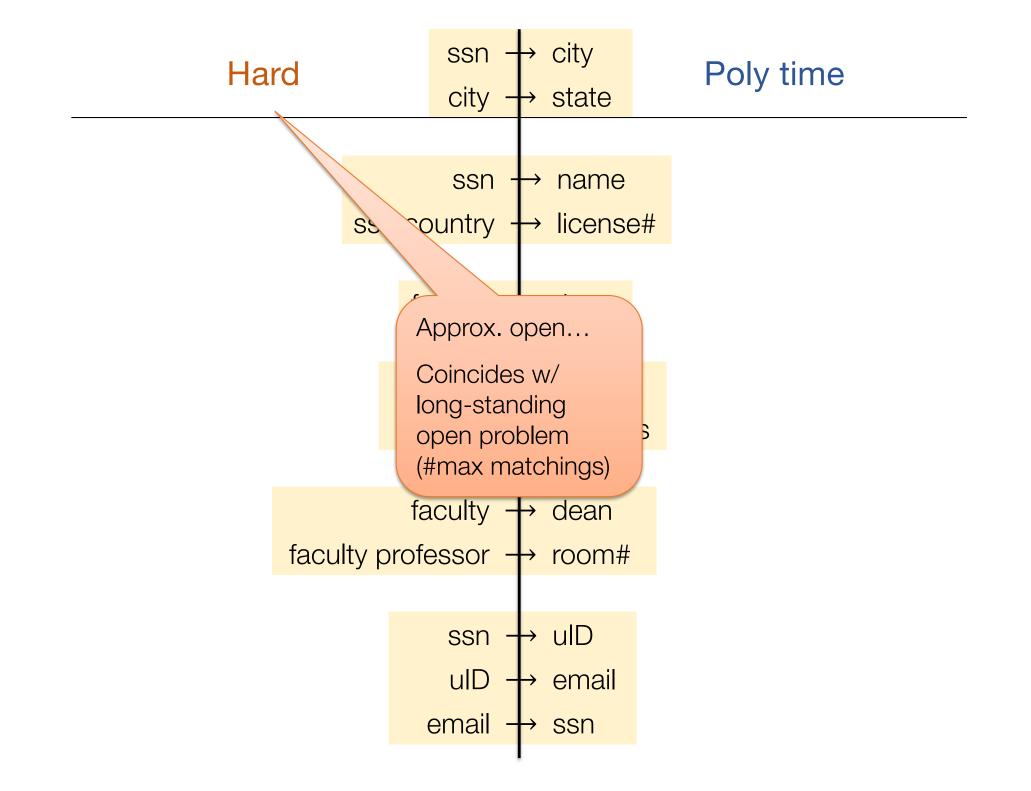
Tractability testable in poly. time (given FDs)

Not P₄-free





* Assuming $P \neq #P$



Outline

- 1. Inconsistency Measures via Repairs
- 2. Repair Counting
- 3. Repair Optimization We are here
- 4. Responsibility to Inconsistency

Detour to Probabilistic Repairing

Probabilistic Duplicates [Andritsos-Fuxman-Miller06]

person → birthCity, birthState

		person	birthCity	birthState	p
	Cullen Douglas	LA	CA	0.6	
	disjoint	Cullen Douglas	Tampa	FL	0.4
indon) disjoint	Marion Jones	LA	CA	1.0
indep. <	indep.	Irene Tedrow	NYC	NY	0.3
disjoint -	Irene Tedrow	LA	FL	0.4	
	Irene Tedrow	Hollywood	FL	0.2	
		Irene Tedrow	Hollywood	CA	0.1

Later termed **Block-Independent** probabilistic **Databases** (BID) [Dalvi-Ré-Suciu11]

Beyond Key Constraints?

person \rightarrow birthCity birthCity \rightarrow birthState

person	birthCity	birthState
Cullen Douglas	LA	CA
Cullen Douglas	Tampa	FL
Marion Jones	LA	CA
Irene Tedrow	NYC	NY
Irene Tedrow	LA	FL
Irene Tedrow	Hollywood	FL
Irene Tedrow	Hollywood	CA

Constrained TID [Gribkoff-VanDenBroeck-Suciu14]

person \rightarrow birthCity birthCity \rightarrow birthState

person	birthCity	birthState	p
Cullen Douglas	LA	CA	0.6
Cullen Douglas	Tampa	FL	0.7
Marion Jones	LA	CA	0.9
Irene Tedrow	NYC	NY	0.6
Irene Tedrow	LA	FL	0.9
Irene Tedrow	Hollywood	FL	0.5
Irene Tedrow	Hollywood	CA	0.8

 $p(W) = Pr(W \mid C)$

Computational problem: find a most probable W (MPD)

Special Case of the Prob. Unclean DB (PUD)

towards

data science

[DeSa-Ilyas-K-Ré-Rekatsinas18]

- HoloClean ٠
 - [Rekatsinas-Chu-Ilyas-Ré17]
- HoloDetect
 - [Heidari-McGrath-Ilyas-Rekatsinas19]

Intension Probabilistic

Data Generator

AI Should not Leave Structured Data Behind!

MACHINE LEARNING

PROGRAMMING

How AI can solve the notorious data cleaning and prep problems

Ihab Ilyas Follow Feb 14 · 7 min read ★

DATA SCIENCE

Realization

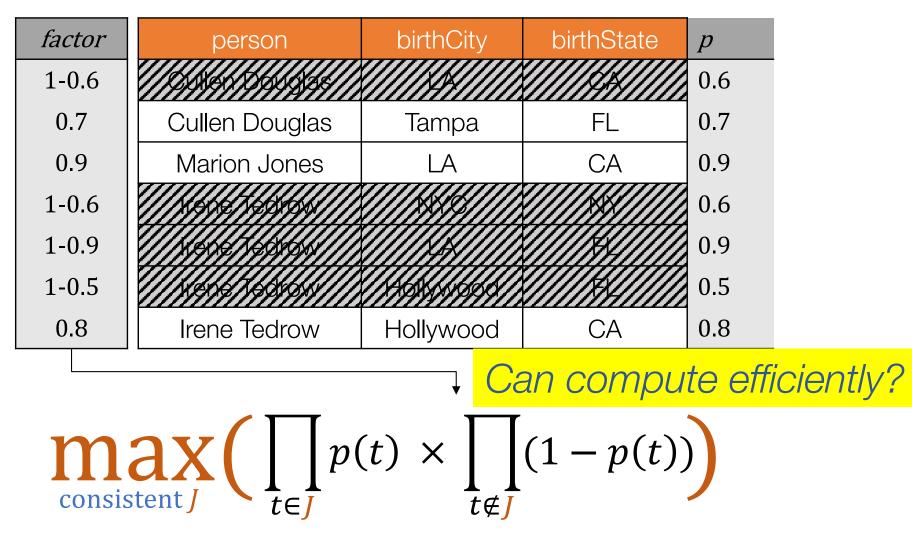
Probabilistic Noise Generator

Uniform distribution over consistent databases (over some finite domain)

False-tuple generator

To solve this problem, we need to understand how to find a **cardinality repair** (largest consistent subset)

person \rightarrow birthCity birthCity \rightarrow birthState



... Back to Repair Optimization

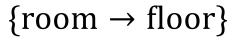
Simplification 1: Common lhs

$$\sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{j=1}^{k} \sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{j=1}^{k} \sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{j=1}^{k} \sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{j=1}^{k} \sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{i$$

facility	room	floor	city
HQ	322	3	Paris
HQ	322	30	Madrid
HQ	122	1	Madrid
Lab1	B35	3	London

Simplification 2: Consensus FD

$$\sum_{i=1}^{x} \{ \emptyset \rightarrow \text{city}, \text{ room} \rightarrow \text{floor} \}$$



facility	room	floor	city
HQ	322	3	Paris
HQ	322	30	Madrid
HQ	122	1	Madrid

Simplification 3: Matching

 $\sum_{i=1}^{x} \sum_{j=1}^{x} \sum_{j$

 $\{\emptyset \rightarrow \text{city}, \text{ room} \rightarrow \text{floor}\}$

fid	fname	room	floor	city
F01	HQ	322	3	Paris
F02	HQ	122	30	Madrid
F02	HQ	122	1	Madrid
F03	Lab1	B35	3	London
F01	Lab1	B25	2	London

Repeated Simplification



THEOREM [Livshits-K-Roy2018]

Fix any set of FDs. The following are equivalent (under standard complexity assumptions):

- 1. A cardinality repair can be found in poly-time.
- 2. An MPD can be found in poly-time.
- 3. The FD set can be **simplified until emptied**.

Generalization to *soft constraints* [Carmeli-Grohe-K-Livshits-Tibi21]

MPD for Weak Constraints

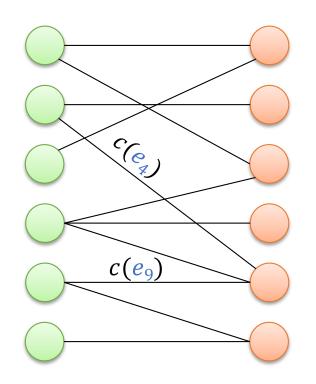
$$MPD: \underset{consistent J}{\text{max}} \left(\prod_{t \in J} p(t) \times \prod_{t \notin J} (1 - p(t)) \right)$$

Soft
constraints:
$$\underset{subset J}{\text{max}} \left(\prod_{t \in J} w(t) \times \prod_{FD \varphi} \prod_{violations} cost(\varphi) \right)$$

$$\underset{(t,t') \subseteq J}{\text{max}} \left(\prod_{t \in J} w(t) \times \prod_{FD \varphi} \prod_{violations} cost(\varphi) \right)$$

$$\underbrace{(t,t') \subseteq J}{\text{max}} \left(\underbrace{(1 - p(t))}_{violations} \left(1 - p(t) \right) \right)$$

Example: "Liberal" Matching



- We need to select a subset of the relationships
- We pay a cost c(e) for denying each relationship e
- We pay a cost c_1 for each \sim
- Goal: least-cost liberal matching

Algorithm via *minimum-cost maximum flow* [Carmeli-Grohe-K-Livshits-Tibi21]

Outline

- 1. Inconsistency Measures via Repairs
- 2. Repair Counting
- 3. Repair Optimization
- 4. Responsibility to Inconsistency

We are here

Responsibility Attribution Requires 2 Parts

Inconsistency Measure Responsibility Sharing Mechanism

Responsibility Attribution Requires 2 Parts

Inconsistency Measure Responsibility Sharing Mechanism

Basic Inconsistency Measures

- Drastic: 1 or 0 (inconsistent or consistent)
 [Thimm 2017]
- #violations (i.e., minimal inconsistent subsets)
 [Hunter & Konieczny 2008]
- #problematic tuples (i.e., tuples in violations)
 [Grant & Hunter 2011]
- **#repairs**: number of maximal consistent subsets – [Grant & Hunter 2011]
- Minimal #tuples to delete to attain consistency (cardinality repair)
 - [Grant and Hunter 2013], [Bertossi 2018]

Responsibility Attribution Requires 2 Parts

Inconsistency Measure Responsibility Sharing Mechanism

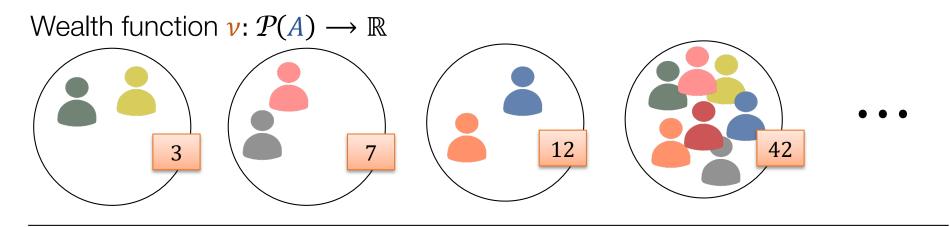
The Shapley Value

• A widely known profit-sharing formula in cooperative game theory by Shapley

- [L.S. Shapley: Stochastic Games, 1953]

- Theoretical justification: unique modulo rationality desiderata
- Applied in various areas:
 - Pollution responsibility in environmental management
 - Influence measurement in social network analysis
 - Identifying candidate autism genes
 - Bargaining foundations in economics
 - Takeover corporate rights in law
 - Local explanations in machine learning
 - Answer explanation for DB queries

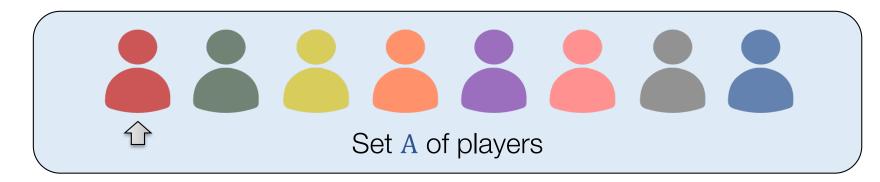
Shapley Definition

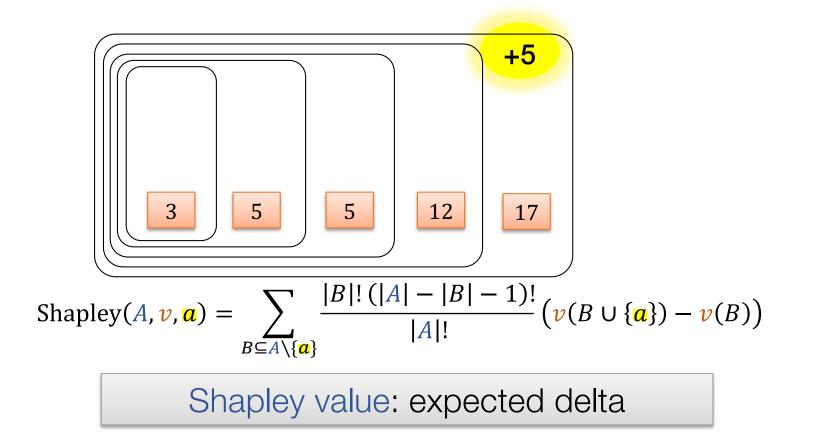


How to share the wealth among the players?

Shapley
$$(A, v, a) = \sum_{B \subseteq A \setminus \{a\}} \frac{|B|! (|A| - |B| - 1)!}{|A|!} \left(v(B \cup \{a\}) - v(B) \right)$$

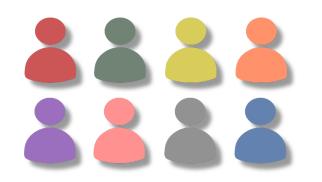
Shapley Explained





Instatiations of the Shapley Value

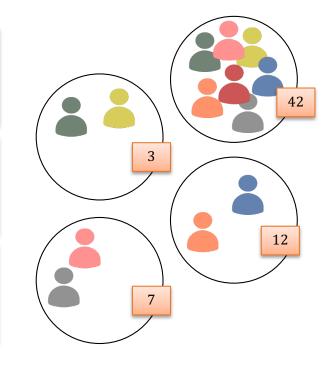
Set A of players



How to share the wealth among the players?

Machine learning Features Prediction Features Prediction V<X</td> X Query answering Tuples Answer Answer Output Inconsistency Tuples Measure Inconsistency Measure

<u>Wealth function $v: \mathcal{P}(A) \to \mathbb{R}$ </u>



Measure	lhs chain	No lhs chain, tractable c-repair	other
drastic	PTIME	FP ^{#P} -complete	
#repairs	PTIME	FP ^{#P} -complete	
card. repair	PTIME Open NP-hard		NP-hard
#violations	PTIME		
#problematic	PTIME		

Computational Complexity + Approximation

Measure	lhs chain	No lhs chain, tractable c-repair	other	
drastic		FP ^{#P} -complete		
approx	PTIME	FPRAS		
#repairs		FP ^{#P} -C	omplete	
approx	PTIME	Open		
card. repair	PTIME	Open	NP-hard	
approx	FIIVIE	FPRAS	No FPRAS	
#violations		PTIME		
#problematic		PTIME	Would imply an FPRAS	
			for #MIS in a bipartite graph – long standing open problem	

Concluding Remarks

- Various ways of measuring inconsistency amount to combinatorial problems over database repairs
- With inconsistency measures, we can attribute responsibility to inconsistency via mechanisms from cooperative game theory (e.g., Shapley, Banzhaf)
- We have a detailed picture of the computational complexity for FDs
- Largely open: other types of constraints, soft constraints, update operations (not just delete)

